### Rule of mixture according to Puck

\[ E_{ t }=\frac{ E_{m } }{ 1-\nu_{ m }^{2 } }*\frac{ 1+0,85*\phi^{ 2 } }{ (1-\phi)^{ 1,25 }+\frac{ E_{ m } }{ (1-\upsilon_{ m}^{ 2 })*E_{ ft } }*\phi} \]

Shear modulus parallel transverse

\[ G_{ 12 }=G_{ 13 }=\frac{ G_{ m } }{ (1-\sqrt{ \nu_{ f }})(1-\frac{ E_{ m } }{ E_{ f22 } }) } \]

Shear modulus transverse transverse

\[ G_{ 23 }= \frac{ G_{ m } }{ (1-\sqrt{ \nu_{ f } })(1-\frac{ G_{ m } }{ G_{ f23 } }) } \]

Poissons's ratio parallel transverse

\[ \nu_{ 12 }=\nu_{ 13 }=\nu_{ f12 }\upsilon_{ f }+\nu_{ m }\upsilon_{ m } \]

Poissons's ratio transverse transverse

\[ \nu_{ 23 }= \frac{ E_{ 22 } }{ 2G_{ 23 } }-1 \]

Heat capacity

\[ C=\frac{ 1 }{ \rho }(\upsilon_{ f }\nu_{ f }C_{ f }+\upsilon_{ m}\nu_{ m }C_{ m }) \]

Thermal conductivity parallel

\[ K_{ 11 }=\upsilon_{ f }K_{ f11 }+\upsilon_{ m }K_{ m } \]

Thermal conductivity transverse

\[ K_{ 22 }= K_{ 33 }=\left( 1-\sqrt{ \upsilon_{ f } } \right)K_{ m }+\frac{ K_{ m}\sqrt{ \upsilon_{ f } } }{ \left( 1-\sqrt{ \upsilon_{ f } } \right)\left( 1-\frac{ K_{ m } }{ K_{ f22 } } \right)} \]

Thermal expansion coefficient parallel

\[ \alpha_{ 11 }=\frac{ \upsilon_{ f } \alpha_{ f11 }E_{ f11 }+\upsilon_{ m } \alpha_{ m }E_{ m }}{ E_{ 11 } }\]

Thermal expansion coefficient transverse

\[ \alpha_{ 22 }= \alpha_{ f22 }\sqrt{ \upsilon_{ f } }+\left( 1-\sqrt{ \upsilon_{ f } } \right)\left( 1+\upsilon_{ f } \nu_{ m }\frac{ E_{ f11 } }{ E_{ 11 }}\right)\alpha_{ m } \]